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Evolving Fuzzy-Model-Based Design of Experiments
With Supervised Hierarchical Clustering

Igor Škrjanc

Abstract—This paper presents a new approach to design of ex-
periments (DoE), based on an evolving fuzzy model structure and a
supervised hierarchical clustering algorithm. DoE is the field that
deals with the problem of how to design the most optimal and eco-
nomic experimentation. The goal is to identify a highly nonlinear
and possibly high-dimensional system, together with the minimal
experimental effort required. The theory is well developed for lin-
ear and polynomial models; however, they are often not suitable for
general use. For this reason, a fuzzy model in the form of Takagi–
Sugeno (T–S) is used, because it has the properties of a universal
approximator. The method works iteratively by sampling the sys-
tem in the input domain and evolving the fuzzy model. The method
is demonstrated with a simulation, which shows the potential of
the proposed approach.

Index Terms—Design of experiments (DoE), fuzzy clustering,
fuzzy model identification.

I. INTRODUCTION

SYSTEM modeling and experimentation are essential parts
of the engineering discipline. Such models are used for the

analysis of systems and for behavior prediction under different
input conditions. The classical approach to modeling is the use
of basic laws to determine the model of the system. The model is
presented as a mathematical function of the input variables and
parameters. In order to determine the parameters of the model,
we usually have to conduct experiments. In practice, a system
often cannot be modeled in the classical way using theoretical
knowledge. The identification of such systems is usually data-
driven. Models that are often used, especially when the system
is nonlinear, are neural networks, local model networks, and
fuzzy models [1], [2].

If a model of the system is known, we can determine the exper-
imental plan, i.e., the distribution of measurements in the input
space, that will ensure the most precise identification. Experi-
ments conducted in this fashion are called designed experiments,
and the branch of statistics that studies designed experiments is
referred to as design of experiments (DoE). A lot of different
methodologies have appeared based on modeling and statistics
to improve the general quality of manufactured goods [3].

DoE methods can be divided into two basic groups, based
on their goals. The first group of method deals with a precise
parameter estimation. The model structure for these kinds of
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DoE methods is needed beforehand in order to determine the
experimental design. The second group aims at homogeneously
covering the experimental space. These kinds of DoE methods
do not need a predefined model and are normally used when
the model is not known. Our approach is to combine both ap-
proaches, where the model evolves during the experiments and
is also used to determine the experimental plan.

DoE methods can be further divided into the following:
1) Classical experimental designs: The samples are dis-

tributed according to a predefined pattern. These patterns
are usually designed for a rectangular or spherical ex-
perimental region and are suitable for certain polynomial
models. Common designs are Full Factorial, Fractional
Factorial, Central Composite, etc. [4].

2) Optimal experimental designs: Given the model, the sam-
ple distribution is chosen so that it minimizes a certain
optimality criterion. This criterion can be based on the
variance of the model parameters or on the variance of
the model output. A nonregular experimental region can
be used in this case. The models are usually limited to the
structures that have linear parameters. Common criteria
are D, A, E, G, I, and V-optimality [5], which will be given
in more detail later.

3) Space-filling designs: The goal of space-filling designs
is to fill the experimental region as homogeneously as
possible using a limited number of samples. They do not
depend on any predefined model. Common methods are
Latin Hypercube Sampling, Maximin, and Minimax de-
signs [6], [7].

The main disadvantage of the model-based DoE methods is
the requirement for a predefined model. It is often the case that
the model of the system is not known in advance and therefore
needs to be identified. On the other hand, space-filling designs
can be used to explore the experimental region and then deter-
mine the suitable model. The main disadvantage of space-filling
designs is that they do not take into account nonlinearities when
determining experimental plans. The proposed method com-
bines the advantages of both basic approaches, starting with the
methods of space-filling design and then involving the evolving
structure of the fuzzy model into the experimental design plan.

In the literature, the optimal experimental design for neural
networks in combination with active learning is presented in [8].
Hametner et al. [9] discuss the optimal experimental design for
neural networks and local model networks, where dynamical
systems are modeled. In [10], the minimization of the bias error
rather than the parameter or output variance is discussed. When
the error variance is small in comparison with the bias error,
minimizing the bias error is beneficial. A method based on active
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learning and hierarchical local model trees, which focuses on
minimizing the model bias error, is proposed in [11] and [5].

The purpose of this contribution is to present an experimental
design method based on a supervised, hierarchical clustering al-
gorithm (SUHICLUST) for fuzzy model identification [12]. The
main advantage of the SUHICLUST algorithm is that it results
in a parsimonious fuzzy model. In combination with an active-
learning approach, a suitable model for a linear or nonlinear
system can be found with a small number of measurements.

This paper is structured as follows. In Section II, the
fuzzy model in the Takagi–Sugeno (T–S) form is described,
together with the supervised hierarchical clustering identifi-
cation algorithm. In Section IV, the proposed method for
the supervised hierarchical-clustering-based DoE is presented.
Section V shows the demonstration of the proposed method.
This paper is concluded in Section VIII.

II. NONLINEAR MODEL DESCRIBED IN THE TAKAGI–SUGENO

FUZZY FORM

The form of the T–S [13] fuzzy model used here is given in a
simplified form as follows:

Rj : if up is Aj , then y = yj (u), j = 1, . . . , m. (1)

The q-element vector uT
p = [up1 , . . . , upq ] denotes the input

or variables in premise, and the variable y is the output of
the model. Each input vector up is connected with the q-
dimensional function Fj , j = 1, . . . , m, which defines the cor-
responding fuzzy set Aj , j = 1, . . . ,m, and each fuzzy set
Aj , j = 1, . . . , m, is associated with a real-valued function
φAj

(up) : R → [0, 1], i.e., the membership function that pro-
duces the membership grade of the variable up with respect to
the fuzzy set Aj .

According to the nature of the system, the variables in
up that define the partitioning of the input–output space are
not necessarily the inputs of the fuzzy system or the vari-
ables in the regression vector. Therefore, the r-element vector
uT = [1, u1 , . . . , ur−1 ] is formed to represent the input to the
fuzzy system. It is usually referred to as the consequence vec-
tor. Augmenting the unit value 1 to the input vector results in
an affine fuzzy model. Depending on the use of the model the
functions yj (·) can be arbitrarily chosen smooth functions, but
affine functions are normally used.

The system in (1) can be described in closed form if the
intersection of the fuzzy sets is previously defined. The gener-
alized form of the intersection is the so-called triangular norm
(T-norm). In our case, the latter was chosen as an algebraic
product providing the output of the fuzzy system

y =
φAj

(up) yj (u)
∑m

j=1 φAj
(up)

, j = 1, . . . , m. (2)

Equation (2) can be simplified by a consideration of unity
partitioning where the functions μj (up) are defined by

μj (up) =
φAj

(up)
∑m

j=1 φAj
(up)

, j = 1, . . . ,m (3)

which gives information about the fulfillment of the respective
fuzzy rule in the normalized form.

Combining (2) and (3), the following equation is derived:

y =
m∑

j=1

μj (up)yj (u). (4)

Equation (4) shows that the output of a fuzzy system is a
function of the premise vector up (q-dimensional) and the con-
sequence vector u (r-dimensional). The first one defines the
input–output partitioning and the second one the regression vec-
tor. The dimension of the input space may be lower than (q + r)
since it is very common to have the same variables present in
the vectors up and u.

Usually, the output value is defined as a linear combination
of the consequence states as given in

yj (u) = ψT
j θj , j = 1, . . . , m (5)

where the model parameters vector with the dimension 1 × r is
denoted as θT

j = [θj0 , θj1 , . . . , θj,r−1 ]
T and where ψT

j with the
dimension 1 × r stands for the weighted augmented regression
vector ψT

j = μj (up)u, j = 1, . . . , m.
Equation (4) consists of m local linear models and can be

written as

y =
m∑

j=1

ψT
j θj . (6)

The whole dataset consists of n measurements, each weighted
regression data vector can therefore be written as ψjk =
μjkuk , k = 1, . . . , n, j = 1, . . . ,m, and the whole data ma-
trix Ψj with the dimensions r × n is written as

Ψj =
[
ψj1 , . . . ,ψjn

]
. (7)

The output data vector of the dimension n × 1 is then written
as yj = [μj1y1 , . . . , μjnyn ]T , j = 1, . . . ,m.

The weighted relation between the model input and model
output at the time instant k is then written as

yjk = ψT
jkθj (8)

or for the whole dataset as

yj = ΨT
j θj . (9)

The parameters of the affine fuzzy model are, in the case
of batch data, obtained using the weighted least-square method
(wLS) for each local model. The fuzzy model in the form given
in (6) is referred to as the affine T–S model and can be used to
approximate any arbitrary function with any desired degree of
accuracy [14], [15].

A. Supervised Hierarchical Clustering for Fuzzy
Model Identification

The main problem in the case of fuzzy identification remains
the partitioning of the data space. The supervised hierarchical
clustering algorithm combines the advantages of the hierarchical
approach, where the input space is divided in a hierarchical man-
ner to determine the validity functions, and the fuzzy clustering
approaches, which find characteristic regions of data samples,
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i.e., clusters, which correspond to the local models. The main
advantage is the ability to adapt to system nonlinearities with
a small number of local models, the accuracy of global and lo-
cal models and the fact that the algorithm practically converges
to the same results, which is not the case when using classical
fuzzy clustering approaches.

In this paper, Gustafson–Kessel (GK) fuzzy clustering [16]
will be combined with a hierarchical decision-tree algorithm.
GK fuzzy clustering finds clusters of different shapes in the
dataset Z, which consists of the input premise data up and the
output y. The data matrix Z is defined as ZT =

[
zT

1 , . . . ,zT
n

]
,

where zk denotes the vector of measurements in the time instant
k, as follows: zk = [upk yk ]. It is assumed that the measured
data are normalized, i.e., centered and scaled, to simplify the
notations. The clusters are described by cluster centers ci , i =
1, . . . ,m, and the corresponding fuzzy covariance matrices Fi ,
i = 1, . . . , m.

The main steps of the algorithm follow the simplified version
of the algorithm from [17]. They are as follows: determination of
the initial T–S fuzzy model with the number of clusters m = 2,
and determination of the worst-modeled local model defined by
the index w, which corresponds to the model with the largest
variation σj defined as

σ2
ej

=
∑n

i=1(yi − ŷ(upi))2μj (upi)∑n
i=1 μj (upi)

, j = 1, . . . , m .

(10)

Next, the domain of the worst model is split into the two new
clusters by applying the GK fuzzy clustering algorithm. The
cluster centers are optimized again using GK, where the old and
the new cluster centers are used as cluster-center prototypes. The
number of clusters is therefore increased by one m = m + 1,
and then, the determination of the validity functions and the
estimation of the parameters of the local models are made. The
steps from the second to the final step are repeated until the stop
condition is met. The stop condition can be either the model
quality or the maximum number of local models mmax .

The pseudocode of the algorithm is given in Algorithm 1.

III. OVERVIEW OF EXPERIMENTAL DESIGN METHODS

In this section, a brief overview of experimental design meth-
ods will be given. They can be divided according to the use of
the model into classical and space-division methods and optimal
design methods that are model based.

A. Classical Approaches

With classical experimental design methods, the measure-
ments are arranged based on a predefined geometrical pattern.
It is assumed that the shape of an input space is either a hy-
percube or a hyperellipsoid. These methods were developed
for polynomial approximation models. Some of the most com-
monly used approaches are full factorial design, fractional (or
incomplete) factorial design, central composite design, etc.

The full fractional design is specified by the number of in-
put variables nu and the resolution r. The approach defines r

Algorithm 1 Pseudocode of the iterative fuzzy model iden-
tification algorithm

1: Calculation of the data center c and the covariance
matrix C = 1

n−1 Z
T Z

2: Singular value decomposition of matrix C = PΛPT

3: Define initial prototypes: v1 = c +
√

λ1p1 , v2 = c −√
λ1p1 , p1 is the main eigenvector with eigenvalue λ1

4: GK clustering using all the data results in
cluster-centers

c1 and c2 .
5: Repeat
6: Compute μj (upk ), j = 1, . . . ,m, k = 1, . . . , n.
7: Compute θj , j = 1, . . . , m using wLS algorithm.
8: Compute σej

, j = 1, . . . ,m.
9: Define the cluster with the largest σej

, (j = w).
10: Calculation of the center cw and the covariance
matrix

Cw = 1
n−1 Z

T
wZw for the worst cluster.

11: Compute the singular value decomposition of Cw =
PwΛwPT

w .
12: For the cluster j = w define initial prototypes: vw1 =

cw +
√

λw1pw1 , vw2 = cw −
√

λw1pw1 .
13: Define initial prototypes: (v1 , . . . ,vj , . . . ,vm+1) =

(c1 , . . . , cj , . . . , cm+1).
14: GK clustering using all the data and initialization with

cluster prototype vj , j = 1, . . . ,m + 1.
15: Until (end criterion is not met)
16: Compute μj (upi), i = 1, . . . , n, j = 1, . . . ,m.
17: Compute θj , j = 1, . . . , m using wLS.
18: Compute output of the model ŷ(upk ), k = 1, . . . , n

Fig. 1. Full factorial design. Dotted lines denote the experimental region and
dots the measuring points. Left: 2n u . Right 3n u .

equally spaced measuring points for each input variable. The
DoE comprises all the possible point combinations. With this
approach, rnu measurements are made. The usual notation for
the full fractional design is rnu . The most common are 2nu and
3nu (see [6]), shown in Fig. 1. The main disadvantage of the full
factorial design is the number of generated measuring points.
The number increases exponentially with the dimension of the
input space. With a high-dimensional input space and a high
resolution, the number of measuring points often becomes too
large for practical applications.

The fractional factorial design approach requires fewer mea-
surement points than the complete factorial design. However,
it also results in a less accurate model-parameter estimation.



864 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 23, NO. 4, AUGUST 2015

It is usually denoted by rnu −p . The left-out measurements are
determined based on an implemented model and method.

There are many other classical DoE approaches, such as
Plackett–Burman, central composite design, and Box–Behnken.
A detailed overview of classical experimental design approaches
can be found in [4].

B. Space-Filling Design

Space-filling designs are experimental designs that do not use
a process model. Their goal is to uniformly cover the experimen-
tal region with measuring points. They are normally used for
the DoE of deterministic processes (experimenting with com-
plex mathematical models), where there are no disturbances or
noise. The only source of error is the model bias. Therefore,
the goal is to determine an unbiased model. This is achieved by
selecting the measuring points throughout whole experimental
region (e.g., regular grid). Incorrect assumptions made in the
model of the relation between the inputs and the response can
produce a bias model. The space-filling designs can also be
used to obtain the initial information about an unknown sys-
tem. They are used to gather enough information to construct a
correct model structure for further experimentation based on a
process model. To obtain the first information about the system,
a full factorial DoE can be used. However, the number of gen-
erated measuring points with the full factorial DoE increases
exponentially with the dimensions of the experimental region.
The space-filling designs tend to partition the experimental re-
gion as uniformly as possible, with the number of measuring
points usually being smaller than nk .

The most frequently used techniques for the space-filling
design are minimax, maximin, and Latin hyper cube design. The
minimax design minimizes the maximum distance between two
measurements for the whole set of measurements in the domain
as given with the criterion

min
U

max
ui ,uj ∈U

d(ui ,uj ) (11)

where U defines the subset with n elements (experimental plan)
of all the possible measuring points D (experimental region),
and d(ui ,uj ) is the distance between two measuring points ui

and uj .
The maximin distance maximizes the minimum distance be-

tween two measurements for the whole set of measurements in
the domain as given with the criterion

max
U

min
ui ,uj ∈U

d(ui ,uj ). (12)

More about the minimax and maximin plans can be found
in [18].

The Latin hypercube design (Latin hypercube sampling) di-
vides each input variable range into n equally probable intervals.
The n measurement points are then placed to satisfy the Latin
hypercube requirements, meaning that when projecting measur-
ing points on one dimension, each point falls into one interval.
This way, the entire experimental region is covered. An example
for n = 5 is shown in Fig. 2.

Fig. 2. Latin hypercube. n = 5. Dotted lines represent the intervals which
divide the input space.

Fig. 3. Full factorial design. Dotted lines denote the experimental region
and dots the measuring points. (Left) Quadratical experimental area. (Right)
Constrained experimental area.

C. Optimal Experimental Design Approaches

In practice, there are a lot of problems that cannot be solved
using conventional approaches due to the following limitations:
the limited number of measurements, which does not corre-
spond to the required number of measurement points calculated
with the classical DoE; and the experimental region has a certain
limitation. The classical DoE approaches usually require the hy-
percube or hyperellipsoidal experimental space. However, these
requirements cannot always be met, due to real process lim-
itations. In real experiments some input combinations are not
allowed, because they would lead to process instability or a dan-
gerous operating regime. An example is shown on the right-hand
side of Fig. 3.

To overcome the described problems, each problem requires
its own DoE method, which has to be adjusted to the problem.
The designer has to design the DoE in the sense of a proper
model structure, the definition of the experimental region, the
number of allowed measurements and, most importantly, the
choice of the optimization criterion.

The optimization criteria can be divided into two groups. The
first group represents the criteria in the parameter space that
minimize the variance of the model parameters, and the second
group represents the criteria in the time domain that minimize
the model-prediction variance.

1) D, A, and E-Optimal Criteria: The optimal DoE is based
on an optimization of the different values of the Fisher infor-
mation matrix I. This means the optimization of the model-
parameter accuracy. The information matrix is calculated from
the derivative of the model output with respect to the model
parameters, as follows:

I =
1
σ2 ΨT Ψ (13)
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where σ2 represents the measurement variance, and Ψ is the
gradient matrix of the model output

ΨT =
[(

∂ ŷ (u1 ,Θ)
∂Θ

)T

, . . . ,
(

∂ ŷ (un ,Θ)
∂Θ

)T
]

. (14)

The Fischer information matrix measures the information of
the input regressor vector. The matrix is real and symmetric and
its inverse gives the dispersion matrix or covariance matrix of
the model parameters [9].

The optimization of the information matrix means better ex-
citation of the input variables and consequently better condition-
ing in the case of identification. To optimize the Fischer matrix,
one of the following criteria can be chosen. The D-optimal crite-
rion, which minimizes the determinant of the covariance matrix
and maximizes the information matrix. The criterion results in
minimizing the generalized variance of the parameter estimates
for a prespecified model. Lowering the parameter variance in-
creases the accuracy of the estimated parameters. The use of
the D-optimal criterion is very common and can be defined
as JD = max |ΨT Ψ|. The A-optimal criterion minimizes the
trace of the parameter covariance matrix. The criterion results
in minimizing the average variance of the model parameters and
is given as JA = min

(
trace

(
ΨT Ψ

))
. The E-optimal criterion

maximizes the smallest eigenvalue of the information matrix, as
given by JE = max

(
λmin

(
ΨT Ψ

))
.

2) G, I, and V-Optimal Criteria: Sometimes the problem re-
quires us to optimize the accuracy of the model prediction. The
criteria presented next minimize the variance of the model pre-
diction, and with that maximize the model prediction accuracy.
They can use different criterion functions, such as maximum
prediction variance or average prediction variance. The most
common criterion is the G-optimal criterion, which minimizes
the maximum model-prediction variance over the experimental
region, which is given as

JG = max
u

(var(ŷ(u))), u ∈ T

where T denotes the experimental region. The I-optimal crite-
rion minimizes the average model-prediction variance over the
experimental region, as follows: JI = min

( 1
A

∑
T var(ŷ(u))

)
,

where A stands for the experimental region volume, and the V-
optimal criterion minimizes the average model-prediction vari-
ance at certain measuring points, as follows:

JV = min

(
1
n

n∑

i=1

var(ŷ(ui))

)

, ui ∈ T .

The most commonly used are the D and I-optimal criteria
[4]. The drawback of the optimal DoEs is, the same as with
the classical DoEs, that they neglect the bias. They assume that
the models are unbiased [5], [10]. In the case of disturbances
and unbiased models, the optimal DoEs are very efficient. Some
examples can be found in [19].

3) Optimal Design of Experiments for Nonlinear Systems:
The optimal DoE methods were first developed for polyno-
mial models; however, they can be used for all types of models
that have linear parameters. There are several successful im-
plementations of the optimal DoE in combination with neural

networks and fuzzy models. In [8], an optimal criterion for a
pattern-recognition neural network is proposed. This criterion
is extended in [20] for dynamic neural networks. The approach
is based on an analytic optimization of the Fischer information
matrix; therefore, the input selection does not depend on the
candidate set. In [9], an approach to the analytic optimization
of the information matrix for dynamic systems is shown. The
DoE approach considers the process output limitations and the
dynamic limitations of the inputs. The approach was tested for
dynamic neural networks and fuzzy models.

IV. DESIGN OF EXPERIMENT BASED ON SUPERVISED

HIERARCHICAL CLUSTERING

The SUHICLUST-based DoE algorithm iteratively adds sam-
ples to the dataset Z and models the dataset with T–S fuzzy
model of increasing complexity. At each iteration, samples are
added in the region of the worst fuzzy model, which implicitly
indicates the system’s nonlinearity.

The assumptions when using DoE based on supervised hier-
archical clustering are as follows: The fuzzy model structure is
unknown; the knowledge of the process is limited (only the ex-
perimental region is known in advance); disturbances and noise
are limited; and the main source of model error is the model’s
inadequate structure.

The proposed DoE is based on the supervised hierarchical
clustering presented in Section II-A. The clustering method was
originally an iterative method. Therefore, it is easy to transform
it into an online clustering method. This is done in the follow-
ing way: First, the fuzzy model is learned on a small amount
of data; then, the measurements are made in the experimental
region where the model’s performance does not satisfy a cer-
tain criterion. At each iteration, the model structure is evolved
and its parameters are adapted considering the new measure-
ments. The SUHICLUST framework was chosen as it is able to
approximate a nonlinear process well with a small number of
local models. Therefore, fewer measuring points are needed to
identify the model.

A. Supervised Hierarchical Clustering Algorithm
Design of Experiment Procedure

A more detailed explanation of the SUHICLUST-DoE proce-
dure will be given next. The procedure consists of initialization,
calculation of the initial fuzzy model parameters, design of the
experimental plan, update of the fuzzy model parameter, and
evaluation of the current fuzzy model.

1) Initialization: The learning procedure starts with the ini-
tial set of data Zo =

[
zT

1 , . . . ,zT
no

]T
with the dimensions

no × (q + 1), where zk = [upk yk ] , k = 1, . . . , no , and no

stands for the number of measurements in the initial dataset.
The initial set of data should be evenly distributed across the
whole experimental domain obtained using the Latin hypercube
approach, full factorial approach, etc.

The number of data no in the initial set must be large enough to
estimate the parameters of two affine local models. The amount
of initial data is defined ad hoc and depends on the nature of the
nonlinearity and the complexity of the problem.
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The parameters of the method that should be defined are the
number of new measuring points nw and the parameter α that
defines the implemented fuzziness (usually set α = 2). Both
parameters lmax and nw implicitly define the final number of
measurements, which is then no + lmaxnw . Next, the termina-
tion criterion defined as the number of maximal iterations lmax
or the maximal allowed normalized root-mean-squared error
(nrmse) in (15) should also be defined

nrmse =

√∑n
k=1 (y(uk ) − ŷ(uk ))2

∑n
k=1 (y(uk ) − ȳ)2 , ȳ =

1
n

n∑

k=1

y(uk ).

(15)
2) Initial Fuzzy Model Parameters: Based on the initial

datasetZo the initial fuzzy model with two local models (m = 2)
is defined. First, two cluster centers are positioned in the main
direction of the data spread [12]. The direction is obtained using
an eigenvalue decomposition of the data covariance matrix Co ,

Co =
1

no − 1
ZT

o Zo = PoΛoPT
o (16)

where Po represents the matrix of eigenvectors, and Λo repre-
sents a diagonal matrix of eigenvalues. The initial position of
the first two cluster centers is defined as

vo1 = co + σo1po1 , vo2 = co − σo1po1 (17)

where σo1 is the square root of the maximum eigenvalue
λo1 (σo1 =

√
λo1), and po1 represents the corresponding

eigenvector.
The optimal positions of the cluster centers c1 and c2 and

their fuzzy covariance matrices F1 and F2 are then calculated
using the GK method

({c1 , c2}, {F1 ,F2}) ← GK (Zo , {v1 ,v2}, α)) . (18)

To obtain the normalized membership values μj (upk ), first, the
distance d2

jk from the data point defined by the index k to each
cluster center (j = 1, 2) is calculated, taking into account the
fuzzy covariance matrix Fj , j = 1, 2, which scales and rotate
the axes

d2
jk = (zk − c̄j )

T F̄−1
j (zk − c̄j ) , j = 1, 2, k = 1, . . . , no

(19)
where c̄j , j = 1, 2, and F̄j , j = 1, 2, stand for the projections
of the cluster center cj , j = 1, 2, and the fuzzy covariance ma-
trix Fj , j = 1, 2, to the input data space domain as follows:

c̄j = cj Ipro j, j = 1, 2 (20)

F̄j = Fj Ipro j, j = 1, 2 (21)

where Ipro j stands for

Ipro j =

[
Iq 0

0 0

]

(22)

and Iq denotes the unit matrix of dimension q × q.
The membership values φj (upk ), j = 1, . . . , 2, k =

1, . . . , no , are calculated by

φj (upk ) = e−γd2
j k (23)

where γ ≥ 1 is a factor that defines the smoothness of the Gaus-
sian function. The normalized membership value is then defined
as

μj (upk ) =
φj (upk )

∑2
j=1 φj (upk )

, j = 1, 2, k = 1, . . . , no .

(24)

At the end of the fuzzy model initialization, the local model
parameters θj , j = 1, . . . , 2, are estimated using the wLS
method.

3) Design of the Experimental Plan: In this step, the fuzzy
model for the existing dataset is evaluated. Based on its per-
formance, the experimental plan is determined. Using the per-
formance analysis, we determine the worst local model. New
measurement points are placed in the cluster area with the worst
local model to provide new information to improve the local
model’s performance.

The evaluation of the local fuzzy model is estimated using
the normalized sum of the squared error

σ2
j =

∑n
k=1(yk − ŷ(upk ))2μj (upk )

∑n
k=1 μj (upk )

, j = 1, . . . , m .

(25)

The worst local model is denoted with the index w, which is
defined as follows:

w = arg max
j

σ2
j . (26)

The new experimental region is defined by the worst-
performing local model w. The possible inputs are all input
vectors up that satisfy the following criterion:

μw (up) > δ (27)

where the parameter δ defines the width of the new experimental
region. The usual value of δ = 0.5.

The next step is the design of the experimental plan. In gen-
eral, there are several possible approaches where the methods of
space-filling design are used. In our case, we chose the design
approach that includes the information from previous measuring
points in the current area. This way, we get more information
about the whole region of the worst local model. First, we gen-
erate a set of random measuring points that satisfy the condition
in (27). Next, we choose nw measuring points in such a way
that the new and old measuring points are uniformly distributed.
This is done using the pseudo-Monte Carlo sampling algorithm
(PM-CSA) [5]. The positions of the selected measuring points
are chosen using the maximin optimization criterion given
in (12).

The PM-CSA algorithm calculates the distances between all
existing measuring points and the newly generated candidates
for the measuring points. For each existing point, the set of
neighborhood points from the candidate set is selected. From
the neighborhood points, a point farthest from the existing mea-
suring point is selected as a new measuring point. The procedure
is repeated until all the nw new measuring points are selected.
The main advantage of this algorithm is that the selected points
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Fig. 4. Example of the experimental plan. Blue dots represent the existing
measuring points, and red dots represent the new measuring points.

uniformly cover the region, taking into account the existing
previous measuring points.

An example of the generated experimental plan with the de-
scribed method is shown in Fig. 4. It is clear that the new
measuring points fill the region where no old measuring points
are present.

4) Updating the Fuzzy Model: When a new measurement set
is obtained for the experimental region of the worst local model,
the cluster is split into two clusters. This is done in a similar
way as with the algorithm initialization. When defining the main
spread direction, only the data belonging to the wth local model
(cluster) are used. The new dataset with the old measurements
and the newly generated is denoted as Zw . The number of mea-
surements in Zw is now equal to nnw , where nnw = now + nw .
The eigenvectors and eigenvalues are calculated as

Cw =
1

nw − 1
ZT

wZw = PwΛwPT
w . (28)

The cluster is split into two parts, and the new center locations
are defined as

vw1 = cw + σw1pw1
vw2 = cw − σw1pw1 (29)

where σw1 stands for the square root of the maximum eigen-
value λw1 (σw1 =

√
λw1), and pw1 represents the corresponding

eigenvector.
The initial center positions {vw1 and vw2} in (29) are used

to apply the local GK clustering algorithm on the dataset Zw as
follows:

({cw1 , cw2}, {Fw1 ,Fw2}) ← GK (Zw , {vw1 ,vw2}, α) .

(30)

Two new centers cw1 and cw2 and the old centers are then used
in the global GK clustering on the whole dataset Z

{cj , j = 1, . . . , m + 1}, {Fj , j = 1, . . . ,m + 1}
← GK (Z, {vj , j = 1, . . . ,m + 1}, α) (31)

{v1 , . . . ,vw1 ,vw2 , . . . ,vm+1}
← {c1 , . . . , cj , , . . . , cm+1}. (32)

The number of local models is now increased to m + 1.
In certain regions, it happens that the clustering is made on

a relatively small set of data measurements. This can produce

Fig. 5. System. (Left) Centered and normalized dataset. (Right) Final fuzzy
model after eight iterations.

singular clusters, meaning that the surface of the cluster pro-
jection onto the input space equals zero. This must be tested
before the new local model is added to the structure. If the pro-
jected fuzzy covariance matrix Fj is ill-conditioned, the cluster
is singular and is therefore removed from the model structure.
The matrix is ill-conditioned if the ratio between its highest and
lowest singular value is larger than the factor β, which is usually
set as 105 . The condition is checked for each cluster. When this
condition is met for a certain cluster, the cluster or local model
is removed from the fuzzy model.

The last step of the iteration is to calculate the membership
functions μj (upk ), j = 1, . . . ,m, k = 1, . . . , n, as proposed in
(19), (23), and (24), and the local model parameters are calcu-
lated with wLS method.

The procedure continues with the next iteration (experiment
design step) until the maximum number of iterations is reached
(l < lmax ) or until the criterion of the optimal design is reached
(nrmse < nrmsemax ).

The pseudocode of the DoE based on hierarchical clustering
(SUHICLUST-DoE) is shown under Algorithm 2.

V. EXAMPLES OF DESIGN OF EXPERIMENTS

This section presents experiments that demonstrate the use of
the proposed algorithm of fuzzy-model-based DoE [21], differ-
ent design plans are compared, and the comparison of different
DoE methods is given for a pharmaceutical modeling problem.

A. Demonstration of Fuzzy Design of Experiments
and Comparison of Different Design Plans

The first example is given by the data that are generated using

y(u1 , u2) = e(−(u1 +u2 ))(u1 + u2) , ui ∈ [0 5], i = 1, 2.
(33)

The validation dataset Zval = [u1 u2 y] represents the set of
all the potential measuring points. It is generated using a full
factorial plan of dimension 502 , which means that the number
of all the measurements equals n = 2500. The measurement
inputs u1 and u2 are in the interval [0, 5]. Before starting the
algorithm, the measuring points are centered and normalized,
which means the inputs are now in the interval [−1, 1].

The function from (33) is in Fig. 5 on the left-hand side.
To test the identification properties and the capability of the
proposed algorithm, noise is added to the process output y so
that the signal-to-noise ratio is 10 dB. The noisy dataset is shown
in Fig. 6. The sum of the squared errors (sse), given in (34),
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Algorithm 2 SUHICLUST-DoE
1: Initialization: Define the initial dataset Zo , the number

of new measurements at each measurement step nw and
the maximal number of iterations lmax or the optimal
criteria nrmsemax to stop the algorithm, and the
fuzziness parameter α.

2: Calculation of the data center co and the covariance
matrix Co = 1

n−1 Z
T
o Zo

3: Singular value decomposition of matrix
Co = PoΛoPT

o

4: Define initial prototypes: vo1 = co +
√

λo1po1 , vo2 =
co −

√
λo1po1 , po1 is the main eigenvector with

eigenvalue λo1
5: GK clustering on dataset Zo with the initial cluster

centers co1 and co2 .
6: Repeat
7: Compute μj (upk ), i = 1, ..., n, j = 1, ...,m.
8: Compute θj , j = 1, ...,m using wLS algorithm.
9: Compute σej

, j = 1, ...,m.
10: Define the cluster with the largest σej

, (j = w).
11: Define nw new measurement points using
pseudo-Monte Carlo sampling algorithm which

satisfy μw (up) > δ and maxU minui ,uj ∈U d(ui ,uj ).
12: Computation of the center cw and the covariance

matrix Cw = 1
n−1 Z

T
wZw for the worst cluster with

added new measurements.
13: Compute the singular value decomposition of

Cw = PwΛwPT
w .

14: For the cluster j = w compute initial prototypes:
vw1 = cw +

√
λw1pw1 , vw2 = cw −

√
λw1pw1 .

15: Compute initial prototypes:
(v1 , ...,vw ,vw+1 , ...,vm ) = (c1 , ..., cw1 , cw2 , ..., cm ).

16: Compute GK (·) on the dataset Zc with initial
prototype vj , j = 1, ...,m, m = m + 1.

17: Eliminate clusters with ill-conditioned fuzzy
covariance matrices.

18: Compute μj (upk ), k = 1, ..., nc , j = 1, ...,m.
19: Compute θj , j = 1, ...,m using wLS.
20: Compute output of the model ŷ(upk ), k = 1, ..., nc

21: Until (end criterion is not met, l < lmax or
nrmse < nrmsemax )

shown below, is used as a measurement set for comparing the
performance of different experimental plans. It is calculated as
the sum of the squared differences between the process output
from the validation dataset Zval and the approximated model
output for all the possible input points u

sse =
n∑

j=1

(y(uj ) − ŷ(uj ))
2 . (34)

The local experimental plans in the proposed fuzzy-model-
based DoE algorithm can be either a random plan (R), where in
each iteration in the worst local model nw measurement points
that satisfy the criterion μw (up ≥ 0.5) are randomly chosen,
or a quasimaximin plan (MM), where in the worst local model

Fig. 6. Model data with added noise.

Fig. 7. Box plots. The numbers show the value of the median. (Left) Compar-
ison of maximin experimental plans and random experimental plan for nw = 4.
(Right) Comparison of maximin experimental plans and random experimental
plan for nw = 8.

nw , measurement points are defined such that they satisfy the
criterion μi(up ≥ 0.5) and the maximin criterion given in (12).
They can be found using different optimization methods.

The proposed experimental plans are tested to investigate
which one is the most appropriate for inclusion in the proposed
DoE approach. For each experimental plan, 100 different runs
are made to generate the statistics. Each plan is also tested
with a different number of new measurements nw in the local
model, n1

w = 4 and n2
w = 8. The maximum number of local

models is limited to 9. The maximum number of measurement
points is then n = n1

w · m = 4 · 9 = 36 in the first example and
n = n2

w · m = 8 · 9 = 72 in the second example.
The results are shown in Fig. 7 for n1

w = 4 on the left hand,
and for n2

w = 8 measurement points on the right-hand side. The
upper and lower lines of the box plot represent the maximum
and minimum of the sse. The upper and lower edges of the
box represent the first and third quartiles. The line inside the
box represents the median value. The points outside the box
represent the outliers.

Fig. 7 shows that, as expected, the maximin plan, with evenly
distributed points in the experimental space, gives better results
than those obtained with the pure randomized approach. The
normal distribution of data is less sensitive to the noise. The
difference is much larger, especially when the number of new
measurements is smaller.

The maximin experimental plan is then used in combination
with the SUHICLUST-DoE approach on the dataset defined
in (33). The initial learning dataset is determined as the Latin
hypercube approach with the initial number of measurements
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Fig. 8. Results for the simulation example. (Left) sse behavior. (Right) Final
fuzzy model structure and measuring points.

TABLE I
COMPARISON BETWEEN DIFFERENT DOE METHODS

Method m n e n d nrmse

SUHICLUST 10 66 0.09
FMID 15 96 0.10
ANFIS 16 102 0.09
LOLIMOT 24 150 0.10

equal to no = 14. The maximum number of iterations is set to
8 (lmax = 8) and the number of new measurement points is set
to 6 (nw = 6). As mentioned above, the quasi-maximin design
plan is used to add the nw new measurements in each iteration,
which all fulfill the maximin criterion from (12).

On the left-hand side of Fig. 8, the sse is shown. The sse
value is lower with every iteration. The only exception is the
fifth iteration, where the sse increases. This phenomenon can
be explained by a local unadequate fuzzy model structure. In
the next iterations, the structure is improved based on the new
measurements.

B. Comparison of Different Design of Experiments Methods

In order to evaluate the proposed method, a comparison of the
different DoE methods applied to a pharmaceutical dataset was
made. The absorption spectra of the protonation equilibria of
Silychristin with a dependence on different wavelengths u1 [nm]
and pH (u2 [pH]) at the temperature of 25 ◦C was used in our
study. This problem is presented in more detail in [22], where the
noise (σn = 0.01) is added to the simulated data. The number
of the initial learning dataset, created with the Latin hypercube
plan, equals 12 and the number of new measurement points at
each iteration equals 6. The comparison is given in Table I, where
our method is compared with the FMID [23], ANFIS [24], and
LOLIMOT [25] methods. In Table I, m stands for the number
of the local models and nend is the number of the measured data
points. The end criterion was given with nrmse ≤ 0.10. The
results show that the proposed method gives comparable results
with a smaller number of local models. An extensive study and
the main advantages of the proposed basic SUHICLUST method
are given in [12].

VI. DESIGN OF EXPERIMENTS FOR THE MATHEMATICAL

SIMULATION MODEL OF A LOW-NOISE AMPLIFIER

Low-noise amplifiers (LNAs) are electronic devices found
at the front-end of a receiver. They are used to amplify very
weak signals such as the signals received from an antenna. It

is essential that the LNA has a very low signal-to-noise ratio,
adds little distortion to the signal, and has a high gain so that the
retrieval of this signal is possible for latter processing.

The main parameters that describe the LNA are the gain,
input impedance, signal-to-noise ratio, and energy consumption.
These parameters are obtained through a computer simulation
of the LNA, which considers all the physical properties of the
LNA’s components. A simulation of this kind of system is very
time consuming; therefore, the number of simulations that need
to be made should be as small as possible.

To model the LNA, the DoE based on supervised hierarchical
clustering is used. The main idea behind this is that the circuit
designer will have an overview of the parameters’ influences on
the circuit’s behavior. Using this kind of approach the circuit-
design procedure is simplified.

For the purpose of the SUHICLUST-DoE method investiga-
tion, the mathematical model of the low-noise amplifier was
taken from [26], [27]. This model will be used instead of the
real LNA to simulate the measurements; however, this has no
influence on our conclusions, since the use of the approach is
general.

The input and output currents of the LNA were modeled using
the following equations:

√

i2in =
√

Ain − Bin (35)
√

i2out =
√

Aout − Bout (36)

where

Ain = |fgs,in |2 i2gs + |fds,in |2 i2ds

Bin = 2Im(0.4fgs,inf

ds,in)

√

i2gs i2ds (37)

Aout = |fgs,out |2 i2gs + |fds,in |2 i2ds

Bout = 2Im(0.4fgs,outf


ds,out)

√

i2gs i2ds (38)

and

fgs,in =
1 + jωLsgm

1 − ω2Cgs(Ls + Lm ) + jωLsgm
(39)

fds,in =
ω2CgsLs

1 − ω2Cgs(Ls + Lm ) + jωLsgm
(40)

fgs,out =
−jω(Ls + Lm )gm

1 − ω2Cgs(Ls + Lm ) + jωLsgm
(41)

fds,out =
1 − ω2Cgs(Ls + Lm )

1 − ω2Cgs(Ls + Lm ) + jωLsgm
. (42)

The variables in the upper equations are described in Tables II
and III. In the first table, the main input variables are presented.
These are the variables that can be determined by the circuit
designer. Their values are determined as a function of the proper
normalized values. The normalized variables Wn , Lsn , fn , Ln ,
Vgtn , and Lmn are then from the interval [−1, 1].

In the second table, the output variables that depend on the
main input variables are presented.
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TABLE II
MAIN INPUT VARIABLES OF THE LOW-NOISE AMPLIFIER

Var. Meaning Value Unit

W trans. width 100 · 10−6 · 10W n m
Ls source induct. 0.5 · 10−9 · 10L s n H
f frequency (11 + 10fn ) · 109 Hz
L trans. length (90 + 30Ln ) · 10−9 m
Vg t voltage 0.275 + 0.2Vg t n V
Lm inductance 1 · 10−9 · 10L m n H

TABLE III
DERIVED VARIABLES OF THE LOW-NOISE AMPLIFIER

Var. Meaning Value Unit

ω angular freq. 2πf Hz

gm trans. conduct. 1 · 10−4 W
L Vg t

A
V

Cg s gate-source capacit. 0.01 · W L F

i2
g s noise sp. den. (gate) 2 · 10−3 W

L Vg t
pA2

Hz

i2
d s noise sp. den. (drain) 0.5 W

L Vg t
pA2

Hz

TABLE IV
EXPERIMENT PARAMETERS

d in no nw lm a x n e n d n t e s t

2 12 6 15 102 900
3 42 15 15 267 27000
4 144 36 15 684 810000

A. Experiment

The experiments were made for three different input dimen-
sions. The parameters of the SUHICLUST-DoE algorithm used
for each experiment are shown in Table IV. The number of initial
measurements and the measurements per iteration are exponen-
tially increased with the number of dimensions. The number
of the initial learning dataset, created with the Latin hyper-
cube plan, is defined as the closest integer value of expression
(
√

12)d in and the number of new measurement points equals
the integer number, closest to the (

√
6)d i n . This way of deter-

mining the number of measurements is used in order to make a
fairer comparison of the algorithm for different numbers of di-
mensions. The number of iterations lmax or the number of local
model m is the same in all the experiments and given as 15. The
final number of measured points nend for each learning example
and the validation datasets are shown in Table IV, along with
the number of dimensions. In the case of a 2-D experiment, the
normalized input variables Wn and Lsm are varied. The other
normalized variables are set to zero. In the 3-D experiment, the
normalized input variables Wn , Lsn , and Lmn are varied, and
in the 4-D experiment, the normalized input variables Wn , Lsn ,
Lmn , and Ln are the input variables. All the other normalized
input variables are set to zero.

The learning and validation dataset is made on a grid de-
fined by 30 evenly distributed points per dimension. The vali-
dation dataset is obtained by shifting the learning grid so that
the samples did not coincide with the training samples. This
way, the measurement of the mean square error (mse) mse =

Fig. 9. Noise currents of the low-noise amplifier.

Fig. 10. Results for 2-D problem (Lm n = 0, Ln = 0).

Fig. 11. Results for 3-D problem (Lm n = 0, Ln = 0).

Fig. 12. Results for 4-D problem (Lm n = 0, Ln = 0).

TABLE V

MODELING RESULTS FOR

√
i2in

d in mse nrmse n e n d /n t e s t

2 2.41 0.09 0.1133
3 4.91 0.15 0.0099
4 6.44 0.21 0.0008

1
n

∑n
j=1 (y(uj ) − ŷ(uj ))

2 is more relevant. The dataset in our
problem for the 2-D experiment is shown in Fig. 9. Besides the
mse, the nrmse is also calculated.

VII. RESULTS AND DISCUSSION

The results are shown in Figs. 10–12 and Tables V and VI.
The results for the 3-D case are plotted with Lnm set to zero
and for the 4-D case with Lnm and Ln set to zero.
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TABLE VI

MODELING RESULTS FOR

√
i2out

d in mse nrmse n e n d /n t e s t

2 0.05 0.07 0.1156
3 0.26 0.17 0.0098
4 0.50 0.23 0.0008

From a visual comparison of the results with the learning
datasets, we can see that the models describe the main charac-
teristic of the noise current in all the cases quite well. For higher
dimensions, the model is a little less accurate, but this is due to
the relatively small number of generated measurement points.

The conclusions can be supported by the results presented in
Table VI, where the values for mse and nrmse are given along
with the ratio between the number of actually made measure-
ments and the number of validation measurements. The model
quality is, as expected, lower for the higher dimensional cases.
In these cases, the ratio between the measurements and the val-
idation dataset is very low. The results could be improved if the
termination criteria were different, i.e., defined to optimize one
of the prediction criteria.

VIII. CONCLUSION

This paper has presented the DoE based on supervised, hier-
archical clustering, and fuzzy model structure. The benefits of
the proposed approach are an ability to model the nonlinear sys-
tem with a small number of local models and a small number of
measurements in the input domain. The demonstration example
shows that the proposed method, which combines the advan-
tages of the evolving fuzzy model with fuzzy clustering and the
maximin experimental plan, is able to identify and model the
behaviors that are very complex and highly nonlinear.
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